1 /*
2 * Copyright (C) 2009 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 package com.google.common.primitives;
18
19 import static com.google.common.base.Preconditions.checkArgument;
20 import static com.google.common.base.Preconditions.checkNotNull;
21
22 import com.google.common.annotations.Beta;
23 import com.google.common.annotations.VisibleForTesting;
24
25 import sun.misc.Unsafe;
26
27 import java.nio.ByteOrder;
28 import java.util.Comparator;
29
30 /**
31 * Static utility methods pertaining to {@code byte} primitives that interpret
32 * values as <i>unsigned</i> (that is, any negative value {@code b} is treated
33 * as the positive value {@code 256 + b}). The corresponding methods that treat
34 * the values as signed are found in {@link SignedBytes}, and the methods for
35 * which signedness is not an issue are in {@link Bytes}.
36 *
37 * <p>See the Guava User Guide article on <a href=
38 * "http://code.google.com/p/guava-libraries/wiki/PrimitivesExplained">
39 * primitive utilities</a>.
40 *
41 * @author Kevin Bourrillion
42 * @author Martin Buchholz
43 * @author Hiroshi Yamauchi
44 * @author Louis Wasserman
45 * @since 1.0
46 */
47 public final class UnsignedBytes {
48 private UnsignedBytes() {}
49
50 /**
51 * The largest power of two that can be represented as an unsigned {@code
52 * byte}.
53 *
54 * @since 10.0
55 */
56 public static final byte MAX_POWER_OF_TWO = (byte) 0x80;
57
58 /**
59 * The largest value that fits into an unsigned byte.
60 *
61 * @since 13.0
62 */
63 public static final byte MAX_VALUE = (byte) 0xFF;
64
65 private static final int UNSIGNED_MASK = 0xFF;
66
67 /**
68 * Returns the value of the given byte as an integer, when treated as
69 * unsigned. That is, returns {@code value + 256} if {@code value} is
70 * negative; {@code value} itself otherwise.
71 *
72 * @since 6.0
73 */
74 public static int toInt(byte value) {
75 return value & UNSIGNED_MASK;
76 }
77
78 /**
79 * Returns the {@code byte} value that, when treated as unsigned, is equal to
80 * {@code value}, if possible.
81 *
82 * @param value a value between 0 and 255 inclusive
83 * @return the {@code byte} value that, when treated as unsigned, equals
84 * {@code value}
85 * @throws IllegalArgumentException if {@code value} is negative or greater
86 * than 255
87 */
88 public static byte checkedCast(long value) {
89 if ((value >> Byte.SIZE) != 0) {
90 // don't use checkArgument here, to avoid boxing
91 throw new IllegalArgumentException("Out of range: " + value);
92 }
93 return (byte) value;
94 }
95
96 /**
97 * Returns the {@code byte} value that, when treated as unsigned, is nearest
98 * in value to {@code value}.
99 *
100 * @param value any {@code long} value
101 * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if
102 * {@code value <= 0}, and {@code value} cast to {@code byte} otherwise
103 */
104 public static byte saturatedCast(long value) {
105 if (value > toInt(MAX_VALUE)) {
106 return MAX_VALUE; // -1
107 }
108 if (value < 0) {
109 return (byte) 0;
110 }
111 return (byte) value;
112 }
113
114 /**
115 * Compares the two specified {@code byte} values, treating them as unsigned
116 * values between 0 and 255 inclusive. For example, {@code (byte) -127} is
117 * considered greater than {@code (byte) 127} because it is seen as having
118 * the value of positive {@code 129}.
119 *
120 * @param a the first {@code byte} to compare
121 * @param b the second {@code byte} to compare
122 * @return a negative value if {@code a} is less than {@code b}; a positive
123 * value if {@code a} is greater than {@code b}; or zero if they are equal
124 */
125 public static int compare(byte a, byte b) {
126 return toInt(a) - toInt(b);
127 }
128
129 /**
130 * Returns the least value present in {@code array}.
131 *
132 * @param array a <i>nonempty</i> array of {@code byte} values
133 * @return the value present in {@code array} that is less than or equal to
134 * every other value in the array
135 * @throws IllegalArgumentException if {@code array} is empty
136 */
137 public static byte min(byte... array) {
138 checkArgument(array.length > 0);
139 int min = toInt(array[0]);
140 for (int i = 1; i < array.length; i++) {
141 int next = toInt(array[i]);
142 if (next < min) {
143 min = next;
144 }
145 }
146 return (byte) min;
147 }
148
149 /**
150 * Returns the greatest value present in {@code array}.
151 *
152 * @param array a <i>nonempty</i> array of {@code byte} values
153 * @return the value present in {@code array} that is greater than or equal
154 * to every other value in the array
155 * @throws IllegalArgumentException if {@code array} is empty
156 */
157 public static byte max(byte... array) {
158 checkArgument(array.length > 0);
159 int max = toInt(array[0]);
160 for (int i = 1; i < array.length; i++) {
161 int next = toInt(array[i]);
162 if (next > max) {
163 max = next;
164 }
165 }
166 return (byte) max;
167 }
168
169 /**
170 * Returns a string representation of x, where x is treated as unsigned.
171 *
172 * @since 13.0
173 */
174 @Beta
175 public static String toString(byte x) {
176 return toString(x, 10);
177 }
178
179 /**
180 * Returns a string representation of {@code x} for the given radix, where {@code x} is treated
181 * as unsigned.
182 *
183 * @param x the value to convert to a string.
184 * @param radix the radix to use while working with {@code x}
185 * @throws IllegalArgumentException if {@code radix} is not between {@link Character#MIN_RADIX}
186 * and {@link Character#MAX_RADIX}.
187 * @since 13.0
188 */
189 @Beta
190 public static String toString(byte x, int radix) {
191 checkArgument(radix >= Character.MIN_RADIX && radix <= Character.MAX_RADIX,
192 "radix (%s) must be between Character.MIN_RADIX and Character.MAX_RADIX", radix);
193 // Benchmarks indicate this is probably not worth optimizing.
194 return Integer.toString(toInt(x), radix);
195 }
196
197 /**
198 * Returns the unsigned {@code byte} value represented by the given decimal string.
199 *
200 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte}
201 * value
202 * @throws NullPointerException if {@code s} is null
203 * (in contrast to {@link Byte#parseByte(String)})
204 * @since 13.0
205 */
206 @Beta
207 public static byte parseUnsignedByte(String string) {
208 return parseUnsignedByte(string, 10);
209 }
210
211 /**
212 * Returns the unsigned {@code byte} value represented by a string with the given radix.
213 *
214 * @param string the string containing the unsigned {@code byte} representation to be parsed.
215 * @param radix the radix to use while parsing {@code string}
216 * @throws NumberFormatException if the string does not contain a valid unsigned {@code byte}
217 * with the given radix, or if {@code radix} is not between {@link Character#MIN_RADIX}
218 * and {@link Character#MAX_RADIX}.
219 * @throws NullPointerException if {@code s} is null
220 * (in contrast to {@link Byte#parseByte(String)})
221 * @since 13.0
222 */
223 @Beta
224 public static byte parseUnsignedByte(String string, int radix) {
225 int parse = Integer.parseInt(checkNotNull(string), radix);
226 // We need to throw a NumberFormatException, so we have to duplicate checkedCast. =(
227 if (parse >> Byte.SIZE == 0) {
228 return (byte) parse;
229 } else {
230 throw new NumberFormatException("out of range: " + parse);
231 }
232 }
233
234 /**
235 * Returns a string containing the supplied {@code byte} values separated by
236 * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2,
237 * (byte) 255)} returns the string {@code "1:2:255"}.
238 *
239 * @param separator the text that should appear between consecutive values in
240 * the resulting string (but not at the start or end)
241 * @param array an array of {@code byte} values, possibly empty
242 */
243 public static String join(String separator, byte... array) {
244 checkNotNull(separator);
245 if (array.length == 0) {
246 return "";
247 }
248
249 // For pre-sizing a builder, just get the right order of magnitude
250 StringBuilder builder = new StringBuilder(array.length * (3 + separator.length()));
251 builder.append(toInt(array[0]));
252 for (int i = 1; i < array.length; i++) {
253 builder.append(separator).append(toString(array[i]));
254 }
255 return builder.toString();
256 }
257
258 /**
259 * Returns a comparator that compares two {@code byte} arrays
260 * lexicographically. That is, it compares, using {@link
261 * #compare(byte, byte)}), the first pair of values that follow any common
262 * prefix, or when one array is a prefix of the other, treats the shorter
263 * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] <
264 * [0x01, 0x80] < [0x02]}. Values are treated as unsigned.
265 *
266 * <p>The returned comparator is inconsistent with {@link
267 * Object#equals(Object)} (since arrays support only identity equality), but
268 * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}.
269 *
270 * @see <a href="http://en.wikipedia.org/wiki/Lexicographical_order">
271 * Lexicographical order article at Wikipedia</a>
272 * @since 2.0
273 */
274 public static Comparator<byte[]> lexicographicalComparator() {
275 return LexicographicalComparatorHolder.BEST_COMPARATOR;
276 }
277
278 @VisibleForTesting
279 static Comparator<byte[]> lexicographicalComparatorJavaImpl() {
280 return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE;
281 }
282
283 /**
284 * Provides a lexicographical comparator implementation; either a Java
285 * implementation or a faster implementation based on {@link Unsafe}.
286 *
287 * <p>Uses reflection to gracefully fall back to the Java implementation if
288 * {@code Unsafe} isn't available.
289 */
290 @VisibleForTesting
291 static class LexicographicalComparatorHolder {
292 static final String UNSAFE_COMPARATOR_NAME =
293 LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator";
294
295 static final Comparator<byte[]> BEST_COMPARATOR = getBestComparator();
296
297 @VisibleForTesting
298 enum UnsafeComparator implements Comparator<byte[]> {
299 INSTANCE;
300
301 static final boolean BIG_ENDIAN =
302 ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN);
303
304 /*
305 * The following static final fields exist for performance reasons.
306 *
307 * In UnsignedBytesBenchmark, accessing the following objects via static
308 * final fields is the fastest (more than twice as fast as the Java
309 * implementation, vs ~1.5x with non-final static fields, on x86_32)
310 * under the Hotspot server compiler. The reason is obviously that the
311 * non-final fields need to be reloaded inside the loop.
312 *
313 * And, no, defining (final or not) local variables out of the loop still
314 * isn't as good because the null check on the theUnsafe object remains
315 * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get
316 * constant-folded.
317 *
318 * The compiler can treat static final fields as compile-time constants
319 * and can constant-fold them while (final or not) local variables are
320 * run time values.
321 */
322
323 static final Unsafe theUnsafe;
324
325 /** The offset to the first element in a byte array. */
326 static final int BYTE_ARRAY_BASE_OFFSET;
327
328 static {
329 theUnsafe = getUnsafe();
330
331 BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class);
332
333 // sanity check - this should never fail
334 if (theUnsafe.arrayIndexScale(byte[].class) != 1) {
335 throw new AssertionError();
336 }
337 }
338
339 /**
340 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
341 * Replace with a simple call to Unsafe.getUnsafe when integrating
342 * into a jdk.
343 *
344 * @return a sun.misc.Unsafe
345 */
346 private static sun.misc.Unsafe getUnsafe() {
347 try {
348 return sun.misc.Unsafe.getUnsafe();
349 } catch (SecurityException tryReflectionInstead) {}
350 try {
351 return java.security.AccessController.doPrivileged
352 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
353 public sun.misc.Unsafe run() throws Exception {
354 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
355 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
356 f.setAccessible(true);
357 Object x = f.get(null);
358 if (k.isInstance(x))
359 return k.cast(x);
360 }
361 throw new NoSuchFieldError("the Unsafe");
362 }});
363 } catch (java.security.PrivilegedActionException e) {
364 throw new RuntimeException("Could not initialize intrinsics",
365 e.getCause());
366 }
367 }
368
369 @Override public int compare(byte[] left, byte[] right) {
370 int minLength = Math.min(left.length, right.length);
371 int minWords = minLength / Longs.BYTES;
372
373 /*
374 * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a
375 * time is no slower than comparing 4 bytes at a time even on 32-bit.
376 * On the other hand, it is substantially faster on 64-bit.
377 */
378 for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) {
379 long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i);
380 long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i);
381 if (lw != rw) {
382 if (BIG_ENDIAN) {
383 return UnsignedLongs.compare(lw, rw);
384 }
385
386 /*
387 * We want to compare only the first index where left[index] != right[index].
388 * This corresponds to the least significant nonzero byte in lw ^ rw, since lw
389 * and rw are little-endian. Long.numberOfTrailingZeros(diff) tells us the least
390 * significant nonzero bit, and zeroing out the first three bits of L.nTZ gives us the
391 * shift to get that least significant nonzero byte.
392 */
393 int n = Long.numberOfTrailingZeros(lw ^ rw) & ~0x7;
394 return (int) (((lw >>> n) & UNSIGNED_MASK) - ((rw >>> n) & UNSIGNED_MASK));
395 }
396 }
397
398 // The epilogue to cover the last (minLength % 8) elements.
399 for (int i = minWords * Longs.BYTES; i < minLength; i++) {
400 int result = UnsignedBytes.compare(left[i], right[i]);
401 if (result != 0) {
402 return result;
403 }
404 }
405 return left.length - right.length;
406 }
407 }
408
409 enum PureJavaComparator implements Comparator<byte[]> {
410 INSTANCE;
411
412 @Override public int compare(byte[] left, byte[] right) {
413 int minLength = Math.min(left.length, right.length);
414 for (int i = 0; i < minLength; i++) {
415 int result = UnsignedBytes.compare(left[i], right[i]);
416 if (result != 0) {
417 return result;
418 }
419 }
420 return left.length - right.length;
421 }
422 }
423
424 /**
425 * Returns the Unsafe-using Comparator, or falls back to the pure-Java
426 * implementation if unable to do so.
427 */
428 static Comparator<byte[]> getBestComparator() {
429 try {
430 Class<?> theClass = Class.forName(UNSAFE_COMPARATOR_NAME);
431
432 // yes, UnsafeComparator does implement Comparator<byte[]>
433 @SuppressWarnings("unchecked")
434 Comparator<byte[]> comparator =
435 (Comparator<byte[]>) theClass.getEnumConstants()[0];
436 return comparator;
437 } catch (Throwable t) { // ensure we really catch *everything*
438 return lexicographicalComparatorJavaImpl();
439 }
440 }
441 }
442 }